



Received: 19/08/2025; Accepted: 25/10/2025; Published: 21/11/2025

# **IC Technology - System Design Issues and Wire Wrapping**

G Sumanth Prasad

Associate Professor

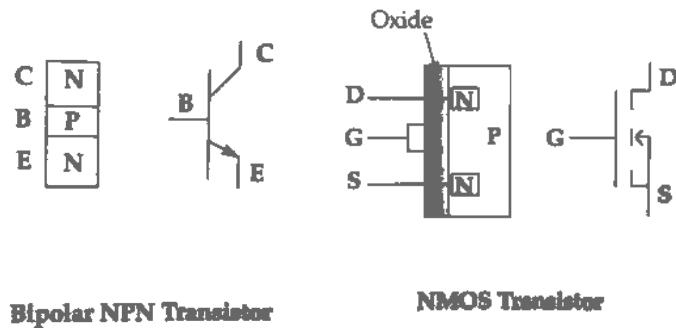
Department of Electronics and CommunicationEngineering

GDMM College of Engineering

Nandigama, Andrapradesh, India

[sumanthgdmm@gmail.com](mailto:sumanthgdmm@gmail.com)

## **Abstract**


In this paper we examine IC technology, and discuss some major developments in advanced logic families. Since this is an overview, it is assumed that the reader is familiar with logic families on the level presented in basic digital electronics.

## **1. Introduction**

The transistor was invented in 1947 by three scientists at Bell Laboratory. In the 1950s, transistors replaced vacuum tubes in many electronics systems, including computers. It was not until 1959 that the first integrated circuit was successfully fabricated and tested by Jack Kilby of Texas Instruments. Prior to the invention of the IC, the use of transistors, along with other discrete components such as capacitors and resistors, was common in computer design. Early transistors were made of germanium, which was later abandoned in favor of silicon. This was due to the fact that the slightest rise in temperature resulted in massive current flows in germanium-based transistors. In semiconductor terms, it is because the band gap of germanium is much smaller than that of silicon, resulting in a massive flow of electrons from the valence band to the conduction band when the temperature rises even slightly. By the late 1960s and early 1970s, the use of the silicon-based IC was widespread in mainframes and minicomputers. Transistors and ICs at first were based on P-type materials. Later on, due to the fact that the speed of electrons is much higher (about two and a half times) than the speed of holes, N-type devices replaced P-type devices. By the mid-1970s, NPN and NMOS transistors had replaced the slower PNP and PMOS transistors in every sector of the electronics industry, including in the design of microprocessors and computers. Since the early 1980s, CMOS (complementary MOS) has become the



dominant technology of IC design. Next we provide an overview of differences between MOS and bipolar transistors. See Figure 1.1.



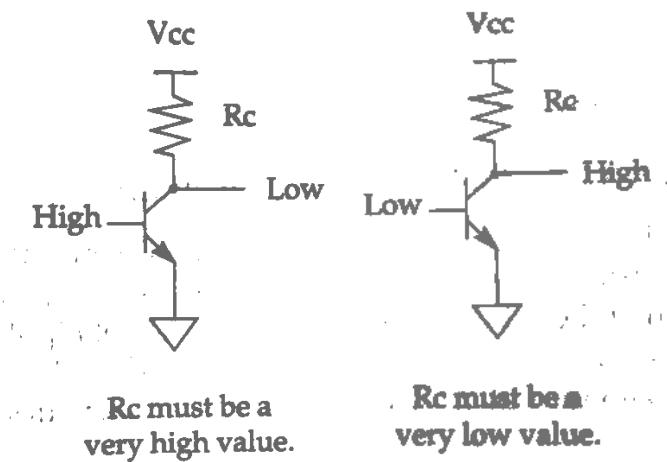
**Figure 1.1** Bipolar vs. MOS Transistors

In NPN-type bipolar transistors, the electron carrier leaving the emitter must overcome two voltage barriers before it reaches the collector (see Figure 1.1). One is the N-P junction of the emitter-base and the other is the P-N junction of the base-collector. The voltage barrier of the base-collector is the most difficult one for the electrons to overcome (since it is reverse-biased) and it causes the most power dissipation. This led to the design of the unipolar type transistor called MOS.

In N-channel MOS transistors, the electrons leave the source and reach the drain without going through any voltage barrier. The absence of any voltage barrier in the path of the carrier is one reason why MOS dissipates much less power than bipolar transistors. The low power dissipation of MOS allows millions of transistors to fit on a single IC chip. In today's technology, putting 10 million transistors into an IC is common, and it is all because of MOS technology. Without the MOS transistor, the advent of desktop personal computers would not have been possible, at least not so soon. The bipolar transistors in both the mainframes and minicomputers of the 1960s and 1970s were bulky and required expensive cooling systems and large rooms. MOS transistors do have one major drawback: They are slower than bipolar transistors.

This is due partly to the gate capacitance of the MOS transistor. For a MOS to be turned on, the input capacitor of the gate takes time to charge up to the turn-on (threshold) voltage, leading to a longer propagation delay.

## 2. Overview of Logic Families


Logic families are judged according to (1) speed, (2) power dissipation, (3) noise immunity, (4) input/output interface compatibility, and (5) cost. Desirable qualities are high speed, low power dissipation, and high noise immunity (since it prevents the occurrence of false logic signals during switching transition). In interfacing logic families, the more inputs that can be driven by a single output,

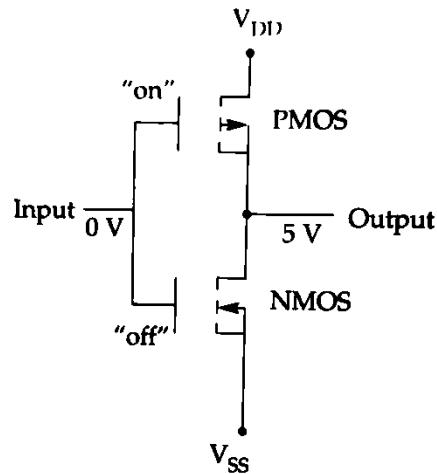


the better. This means that high-driving-capability outputs are desired. This, plus the fact that the input and output voltage levels of MOS and bipolar transistors are not compatible mean that one must be concerned with the ability of one logic family to drive the other one. In terms of the cost of a given logic family, it is high during the early years of its introduction but it declines as production and use rise.

### 3. The Case of Inverters

As an example of logic gates, we look at a simple inverter. In a one-transistor inverter, the transistor plays the role of a switch, and  $R$  is the pull-up resistor. See Figure 3.1. However, for this inverter to work most effectively in digital circuits, the  $R$  value must be high when the transistor is "on" to limit the current flow from  $V_{CC}$  to ground in order to have low power dissipation ( $P = VI$ , where  $V = 5$  V). In other words, the lower the  $I$ , the lower the power dissipation. On the other hand, when the transistor is "off",  $R$  must be a small value to limit the voltage drop across  $R$ , thereby making sure that  $V_{OUT}$  is close to  $V_{CC}$ . This is a contradictory demand on  $R$ . This is one reason that logic gate designers use active components (transistors) instead of passive components (resistors) to implement the pull-up resistor  $R$ .




**Figure 3.1** One Transistor Inverter with Pull-up Resistor

### 4. CMOS inverter

In the case of CMOS-based logic gates, PMOS and NMOS are used to construct a CMOS (complementary MOS) inverter as shown in Figure 4.1. In CMOS inverters, when the PMOS transistor is off, it provides a very high impedance path, making leakage current almost zero (about 10 nA); when the PMOS is on, it provides a low resistance on the path of VDD to load. Since the speed of the hole is slower than that of the electron, the PMOS transistor is wider to compensate for this



disparity; therefore, PMOS transistors take more space than NMOS transistors in the CMOS gates. At the end of this section we will see an open-collector gate in which the pull-up resistor is provided externally, thereby allowing system designers to choose the value of the pull-up resistor.



**Figure 4.1** CMOS Inverter

## 5. Wire Wrapping

There are several different types of wire-wrap tools available. The best one is available from Radio Shack for less than \$10. The part number for Radio Shack is 276-1570. This tool combines the wrap and unwrap functions in the same end of the tool and includes a separate stripper. We found this to be much easier to use than the tools that combined all these features on one two-ended shaft. There are also wire-wrap guns, which are, of course, more expensive.

Wire-wrapping wire is available preshipped in various lengths or in bulk on a spool. The preshipped wire is usually more expensive and you are restricted to the different wire lengths you can afford to buy. Bulk wire can be cut to any length you wish, which allows each wire to be custom fit.

Several different types of wire-wrap boards are available. These are usually called perfboards or wire-wrap boards. These types of boards are sold at many electronics stores (such as Radio Shack). The best type of board has plating around the holes on the bottom of the board. These boards are better because the sockets and pins can be soldered to the board, which makes the circuit more mechanically stable.

Choose a board that is large enough to accommodate all the parts in your design with room to spare so that the wiring does not become too cluttered. If you wish to expand your project in the future, you should be sure to include enough room on the original board for the complete circuit. Also, if possible, the layout of the IC



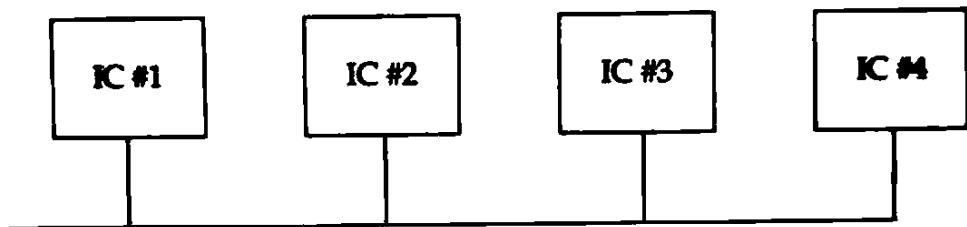
on the board needs to be such that signals go from left to right to match the schematics.

To make the wiring easier and to keep pressure off the pins, install one standoff on each corner of the board. You may also wish to put standoffs on the top of the board to add stability when the board is on its back.

For power hook-up, use some type of standard binding post. Solder a few single wire-wrap pins to each power post to make circuit connections (to at least one pin for each IC in the circuit).

To further reduce problems with power, each IC must have its own connection to the main power of the board. If your perfboard does not have built-in power buses, run a separate power and ground wire from each IC to the main power. In other words, DO NOT daisy chain (chip-to-chip connection is called daisy chaining) power connections, as each connection down the line will have more wire and more resistance to get power through. However, daisy chaining is acceptable for other connections such as data, address, and control buses.

You must use wire-wrap sockets. These sockets have long square pins whose edges will cut into the wire as it is wrapped around the pin.


Wire wrapping will not work on round legs. If you need to wrap to components, such as capacitors, that have round legs, you must also solder these connections. The best way to connect single components is to install individual wire-wrap pins into the board and then solder the components to the pins. An alternative method is to use an empty IC socket to hold small components such as resistors and wrap them to the socket.

The wire should be stripped about 1 inch. This will allow 7 to 10 turns for each connection. The first turn or turn-and-a-half should be insulated. This prevents stripped wire from coming in contact with other pins. This can be accomplished by inserting the wire as far as it will go into the tool before making the connection.

Try to keep wire lengths to a minimum. This prevents the circuit from looking like a bird nest. Be neat and use color coding as much as possible. Use only red wires for  $V_{cc}$  and black wires for ground connections. Also use different colors for data, address, and control signal connections. These suggestions will make troubleshooting much easier.

It is standard practice to connect all power lines first and check them for continuity. This will eliminate trouble later on.

It's also a good idea to mark the pin orientation on the bottom of the board. Plastic templates are available with pin numbers preprinted on them specifically for this purpose or you can make your own from paper. Forgetting to reverse pin order when looking at the bottom of the board is a very common mistake when wiring new circuits.



**Figure 5.1** Daisy Chain Connections

To prevent damage to your circuit, place a diode (such as 1N5338) in reverse bias across the power supply. If the power gets hooked up backwards, the diode will be forward biased and will act as a short, keeping the reversed voltage from your circuit.

In digital circuits, there can be a problem with current demand on the power supply. To filter the noise on the power supply, a 100  $\mu$ F electrolytic capacitor and a 0.1  $\mu$ F monolithic capacitor are connected from  $V_{CC}$  to ground, in parallel with each other, at the entry point of the power supply to the board. These two together will filter both the high- and the low-frequency noises. Instead of using two capacitors in parallel, you can use a single 20–100  $\mu$ F tantalum capacitor. Remember that the long lead is the positive one.

To filter the transient current, use a 0.1  $\mu$ F monolithic capacitor for each IC. Place the 0.1  $\mu$ F monolithic capacitor between  $V_{CC}$  and ground of each IC. Make sure the leads are as short as possible.

## 5. Conclusion

In this Paper given overview of the IC design issues and wire wrapping to get an idea while designing the Integrated circuits.

## References:

1. Darmi, M., Cherif, L., Benallal, J., Elgouri, R., & Hmina, N. (2017). Integrated Circuit Conception: A Wire Optimization Technic Reducing Interconnection Delay in Advanced Technology Nodes. *Electronics*, 6, 78. <https://doi.org/10.3390/electronics6040078>
2. Alam, L., & Kehtarnavaz, N. (2022). A Survey of Detection Methods for Die Attachment and Wire Bonding Defects in Integrated Circuit Manufacturing. *arXiv*. <https://arxiv.org/abs/2206.07481>



3. Qu, F., et al. (2021). Research on Wire Sweep of Integrated Circuit Packaging Based on Three-Dimensional Flow Simulation. In 2021 22nd International Conference on Electronic Packaging Technology (ICEPT) (pp. 1-5). <https://doi.org/10.1109/ICEPT52304.2021.9612884>